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Abstract 
 

DNA microarrays have emerged as a viable platform for detection of pathogenic 
organisms in clinical and environmental samples. These microbial detection arrays 
occupy a middle ground between low-cost, narrowly focused assays such as multiplex 
PCR, and more expensive, broad-spectrum technologies like high-throughput sequencing. 
While pathogen detection arrays have been used primarily in a research context, several 
groups are aggressively working to develop arrays for clinical diagnostics, food safety 
testing, environmental monitoring and biodefense. Statistical algorithms that can analyze 
data from microbial detection arrays and provide easily interpretable results are 
absolutely required in order for these efforts to succeed. In this article, we will review the 
most promising array designs and analysis algorithms that have been developed to date, 
comparing their strengths and weaknesses for pathogen detection and discovery. 

 



Introduction 
 
Infectious diseases pose a growing threat to public health, due to increased rates of 
population growth, international trade and air travel, climate change, bacterial antibiotic 
resistance, and a wide range of other factors. In addition, global conflicts over the past 
decade have raised concerns that pathogenic agents might be released deliberately by 
terrorist organizations or other entities. Public and private funding agencies have 
responded to these concerns by investing heavily in the development of new assays for 
microbial surveillance and discovery. The majority of these new methods involve direct 
detection of microbial nucleic acids. Ideally, these methods should be effective both as 
detection assays (for identification of known pathogens) and as discovery techniques (for 
revealing the presence of novel, previously uncharacterized organisms).  

Most currently available methods for microbial detection and discovery using nucleic 
acid samples are based on three technologies. In order of increasing cost, these are the 
polymerase chain reaction (PCR), oligonucleotide microarrays, and DNA sequencing. 
These platforms have different strengths and weaknesses. While sequencing provides the 
most in-depth, unbiased information, and is most likely to reveal novel organisms, it is at 
present still too costly and time-consuming for routine use - especially when the 
resources required for data processing and analysis are taken into account. At the other 
end of the cost spectrum, PCR assays are very fast and sensitive, but have limited 
capacity for multiplexing (to test for the presence of several organisms simultaneously). 
They are also highly specific; this is an advantage for detecting a microbe whose 
sequence is precisely known, but a great disadvantage for discovery of novel species, or 
for detecting variant strains of a known species.  

Microarrays occupy a middle ground with respect to cost, processing time, sensitivity, 
specificity, and ability to detect novel organisms. The high-density arrays available today 
are able to test for the presence of thousands of different organisms simultaneously, at a 
cost less than US$100 per sample. Arrays can be designed with a combination of high-
specificity probes and probes designed against conserved regions, so that they can be 
used in both detection and discovery modes. Therefore, microarrays offer an ideal 
balance of capabilities for broad-spectrum microbial surveillance.  
A microarray is a miniaturized device containing short (25- to 70-mer) single stranded 
DNA oligonucleotide probes (or “oligos”) attached to a solid substrate, as shown in 
Figure 1. The probes are designed to have sequences complementary to segments of one 
or more target organism genomes.  Oligos may be spotted onto the array by mechanical 
deposition [1], sprayed on with a modified inkjet printer head [2], or synthesized in situ 
through a series of photocatalyzed reactions [3]. Probes are placed on the array in a 
rectangular grid of “features”, each containing many copies of the same oligo. The 
density of features on the array varies between platforms, from 20,000 spots per slide for 
a typical spotted array, to several million for platforms such as NimbleGen and 
Affymetrix that use in situ synthesized oligos. Arrays may be subdivided with a gasket 
into subarrays, allowing multiple samples to be tested on one slide. Replicate features, 
scattered randomly across the array, may be used to allow correction for scratches and 



spatial effects. On some arrays, negative control probes with random sequences are 
included, to provide a threshold level for background noise correction.  

To analyze a sample with the array, nucleic acids are extracted and converted to cDNA if 
necessary (e.g., if the target of interest is viral genomic RNA). The DNA is amplified if 
needed, fragmented, and fluorescently labeled. The labeled DNA is incubated on the 
array surface for several hours, allowing enough time for the DNA fragments to hybridize 
to complementary or nearly complementary probes, if they exist on the array. The array is 
then washed to remove unbound DNA and scanned to produce a file of fluorescence 
intensities for each feature. In the resulting image, bright features will correspond to 
probes that are complementary to the DNA in the sample. 

 
Figure 1: Schematic view of a microarray, showing single-stranded DNA oligo probes attached to 
substrate, with fluorescently labeled (green) target DNA strands bound to selected oligos. 

 

Pathogen detection array designs 
 
Several groups have applied microarray technology to pathogen detection. Their 
approaches may be distinguished according to the range of pathogens targeted, the probe 
design strategy, and the array platform used. Each group has also developed analysis 
algorithms specialized for its own array platform, which we will discuss in a subsequent 
section.  

ViroChip 
 
The first microarray designed for detection of a wide range of pathogens was the 
ViroChip [4]. The initial version of the ViroChip contained 1,600 probes derived from 
the 140 complete viral genomes available in GenBank when the array was designed. 
Later versions of the array were developed to cover a wider range of viruses as additional 
genomes were published [5]. The ViroChip is fabricated by mechanically spotting 
synthesized oligonucleotides on a glass slide. The oligos are 70-mers, usually selected to 
match sequences common to a taxonomic family, but not found in other families. For 
some families, oligos were instead selected at the genus level. Because the probes were 
designed against conserved sequences, the ViroChip could be used to identify novel 



viruses within the same family as a known, sequenced virus. This capability was used to 
characterize the virus responsible for the 2003 SARS outbreak as a novel coronavirus [6].  

The advantages of the ViroChip platform include the low cost of spotted oligo arrays, and 
its ability to detect novel viruses within a known family. Its disadvantages result mainly 
from the limitations of spotted oligo technology: the low density of probes that can be 
spotted on each slide, the inherent noisiness of the data, and the large up-front cost for 
each array design (because tens of thousands of commercially synthesized oligos must be 
purchased for each design).  

Resequencing Pathogen Microarrays 
 
Another approach to pathogen detection uses resequencing microarrays [7, 8]. These 
arrays contain short probes (25 or 29-mers) tiled along selected genes of the target 
pathogen species. Four probes are designed for each location in a target gene: one with a 
perfect match base at the central position of the probe, and one for each of the 3 
alternative bases. Hybridization and analysis of these arrays yields a sequence for each 
target gene homolog present in the sample; the sequence is then matched to a species and 
strain by comparison against a sequence database, using BLAST [9].  
The prototype Respiratory Pathogen Microarray (RPM v1.1) was manufactured as a 
custom Affymetrix array. It contained probes for several common human respiratory 
viruses and bacteria, including influenza, adenovirus, coronavirus, and rhinoviruses, 
together with bacteria such as Bordetella pertussis and Streptococcus pneumoniae. More 
recent designs based on this approach, such as the resequencing pathogen microarray for 
tropical and emerging infectious agents (RPM-TEI v1.0) [10], contain probes for a wider 
variety of pathogens and known toxin genes, focusing on the category A, B and C select 
agents defined by the Centers for Disease Control (CDC).  
 
The use of short oligonucleotide probes, with a large number of oligos per target gene, 
gives the RPM arrays very high specificity for strain-level identification of target 
organisms. The disadvantages of the RPM approach are its lower sensitivity (due in part 
to the use of short oligos), the limited range of organisms that can be covered on a single 
array (because of the large number of probes required for each target), and its lack of 
ability to detect novel organisms.  

Universal detection array 
A sequence-independent “universal” microarray was described in [11]. Rather than 
selecting oligos from sequenced microbial genomes, the authors created an array 
containing 14,283 unique 12-mer and 13-mer probes with randomly generated sequences. 
Probes were excluded from the array design if they differed at fewer than 4 positions (for 
12-mers) or 5 (for 13-mers) from previously selected probes. The authors further refined 
the probe list by building prototype arrays, and excluding from further analysis probes 
that did not give reproducible signals when data from replicate hybridizations were 
compared. Oligos were synthesized on arrays using a photocatalytic process, similar to 
that used on the NimbleGen platform. Hybridizations were performed at low 
temperatures (23°C) to compensate for the extremely short probe length. 



By hybridizing genomic DNA from several bacterial species, the authors demonstrated 
that their array produced reproducible patterns of probe intensities (or “signatures”) that 
distinguished between one species and another. Probe intensities were not correlated 
either with occurrences of the oligo sequence in the target bacterial genome or with 
predicted free energies of hybridization. Thus, identification of an unknown target using 
this array relies on comparison of the observed intensity pattern to a compendium of 
signatures acquired by hybridizing known targets to the array. The primary advantage of 
the universal array approach is that the probes are not specific to genomes that have 
already been sequenced, so that the array design does not need to be updated as new 
genomes become available. The principal disadvantage is the lack of any means of 
predicting signatures for organisms of known sequence; these must be obtained 
experimentally for every species of interest. The large number of experiments required 
makes this approach impracticable for broad-spectrum detection, especially for agents 
that must be handled using BSL-3 and BSL-4 procedures. 

GreeneChip 
 
The “GreeneChip” arrays represent a broader-spectrum approach to pathogen detection 
[12, 13]. These are high-density oligonucleotide arrays, fabricated using the Agilent 
inkjet system. GreeneChipVr version 1.0 contains 9,477 probes for viruses infecting 
vertebrates. GreeneChipPm v1.0 is a panmicrobial array design, containing all of the 
GreeneChipVr probes, together with probes for several thousand pathogenic bacteria, 
fungi and protozoa, comprising a total of 29,495 60-mer oligos. Viral probes were 
designed to target a minimum of 3 genomic regions for each family or genus of virus. 
Typically, one highly conserved region was chosen, along with 2 or more variable 
regions. Probe sequences were selected so that every vertebrate virus in the ICTV 
database (International Committee on Taxonomy of Viruses) or in GenBank was 
represented by at least one probe, with 5 or fewer mismatches. Bacterial, fungal and 
protozoan probes were selected by a similar strategy, except that the target sequences 
were only chosen from the 16S ribosomal RNA (rRNA) genes of bacteria and 18S 
rRNAs of fungi and protozoa.  

When they were tested with virus-infected cell cultures and clinical samples from virally 
infected patients, the GreeneChip arrays correctly identified the virus at the species level. 
Performance with bacterial samples was poorer, due to the choice of 16S rRNA as the 
target gene; probes for these targets tended to cross-hybridize across taxa, so that some 
bacteria could only be identified at family or class resolution. The sensitivity of these 
arrays was comparable to that of the ViroChip series, due to the use of long (60-mer) 
oligos. 

Lawrence Livermore Microbial Detection Array (LLMDA) 
 
The most comprehensive pathogen detection arrays reported to date were designed by a 
team at Lawrence Livermore National Laboratory [14, 15]. Initial versions of the 
Lawrence Livermore Microbial Detection Array (LLMDA) contained target probes for 
all bacteria and viruses (pathogenic and otherwise) for which full genome sequences were 
available. More recent versions also include probes for pathogenic fungi and protozoa. 
Probe lengths on a single array vary between 50 and 65 nucleotides, and are adjusted so 



that all probes on the array have roughly equivalent affinities for their complementary 
target DNA molecules.  

As on the GreeneChip, probes are selected from target genomes by one of two strategies. 
“Discovery” probes match genome regions that are unique to a taxonomic family or 
subfamily, but are shared by the species within that family. By targeting sequences that 
evolve more slowly within families, the discovery probes are optimized for detection of 
novel species within a known family. “Census” probes target highly variable regions that 
are unique to an individual species or strain. They are optimized for forensic use, to 
identify the specific strain of organism in a sample as precisely as possible.  
The LLMDA designs are primarily deployed on the NimbleGen platform, and have also 
been prototyped with Agilent inkjet technology. NimbleGen arrays are fabricated by 
photocatalytic synthesis, using a digital micromirror device to control the addition of 
nucleotides to each oligo. This technology supports higher probe densities than either 
spotted oligo arrays or the Agilent inkjet platform, with up to 4.2 million features per 
array. Thus, the LLMDA is able to represent each sequenced microbial genome by a 
large number of diverse probes, varying from 10 to 50 depending on the array format and 
the range of microbes targeted. A probe is counted toward the minimum representation if 
it has an alignment to the target genome with at least 85 percent identity and with a 29-
mer perfect match subsequence. Bacterial probes are selected from full genome 
sequences, rather than from 16S rRNA genes as in the GreeneChip, enabling strain-level 
discrimination for most bacteria.  The LLMDA was shown to have high sensitivity and 
specificity when tested against a variety of previously characterized viral and bacterial 
cultures, and was also used successfully to detect adventitious porcine circovirus DNA in 
a pediatric rotavirus vaccine [16]. 

The advantages of the LLMDA are its broad coverage of bacteria and viruses, as well as 
of eukaryotic pathogens. Its only significant disadvantage (shared by the RPM, 
GreeneChip and other high-density oligonucleotide arrays) is its cost. However, the cost 
differential is minimized in the multiplex NimbleGen array formats, in which 3, 4, 12 or 
24 samples can be hybridized to a single array. 

Pathogen detection array analysis  

General issues 
 
Much of the initial work on microarray data analysis focused on the use of these arrays to 
measure gene expression; that is, to infer changes in messenger RNA (mRNA) 
concentration in cells or tissues, resulting from changing experimental conditions, by 
hybridizing labeled copies of mRNAs to arrays containing probes for specific gene 
transcripts. Algorithms for expression data analysis had to deal with the fact that, in most 
experiments, the true mRNA concentrations were unknown. Therefore, most work on 
expression analysis was aimed at background correction, normalization, and estimation of 
concentration ratios (fold changes) between different conditions.  
Detection array analysis offers the opportunity to understand microarray behavior in 
much greater detail, because the samples analyzed are produced from genomic DNA. 



Sequences are known for many microbial genomes, and standard laboratory techniques 
exist to measure the concentration of DNA in a sample. Therefore, one can design 
experiments in which sample DNA molecules with known degrees of similarity to probe 
sequences are present, at a wide range of known concentrations. The wealth of 
information available in these experiments makes it possible to develop detection 
algorithms based on models, in which the probe signal given the presence of a target 
organism at some concentration is predicted from the probe and target genome 
sequences. After fitting model parameters from experiments with known samples, one 
can solve the inverse problem to find the targets that best explain the observed array data 
for an unknown sample.  

Nevertheless, detection arrays present many of the same analysis issues as other types of 
microarrays. Probe signals must be corrected for background fluorescence of the array 
substrate, and have additional noise contributions due to transient hybridization with 
noncomplementary or partially matching DNA molecules. Probe and target DNAs may 
form hairpins or other secondary structures that prevent hybridization between expected 
partners, or enhance hybridization between unexpected probe-target pairs. Chemical 
saturation, in which most or all of the oligos in a probe feature are bound by target 
DNAs, creates a nonlinear relationship between target concentration and probe intensity. 
Another source of nonlinearity is optical saturation, which occurs when the scanner 
converts the analog probe intensity to a 16-bit digital value; all intensities greater than 
some threshold are reported as the maximum value (65535); thus, if the scanner 
photomultiplier tube (PMT) gain is set too high, a substantial amount of information 
about the true probe intensities may be lost.  

GreeneLAMP 
  
Many current algorithms for detection array analysis follow purely empirical approaches, 
without trying to model the physical processes underlying hybridization, washing and 
scanning. The algorithm developed for GreeneChip analysis, “log-transformed analysis 
of microarrays using p-values” (GreeneLAMP) [12], is one such approach to the species 
identification problem. The GreeneLAMP algorithm makes several key assumptions 
about array experiments:  
• Probe intensities are log-normally distributed.  

• Probe intensities represent independent measurements of target genome 
concentrations.  

• The number of probes for any species having positive signals is limited, on the order 
of 100 or fewer.  

When pairs of probe sequences are 95 percent or more identical, the independence 
assumption is clearly violated. In this case, the algorithm clusters probes into equivalence 
groups and pools their signals in an unspecified manner. Probes are associated with target 
taxa using BLAST; the score threshold for association is not specified, and there appears 
to be no attempt to differentiate between probes with strong and weak similarity.  
To analyze an array experiment, the GreeneLAMP software first subtracts background 
levels from the probe intensities, for probes more than 2 standard deviations from the 



mean. The background levels are derived from matched control samples when they are 
available, and from random 60-mer control probes on the same array otherwise. The 
software then centers the log intensities, divides them by the standard deviation to form Z 
-scores, and computes tail probabilities (p-values) under the log-normality assumption. It 
then categorizes the probes as positive or negative according whether the p-values exceed 
a fixed threshold: 0.1 for arrays with matched controls, and 0.023 otherwise. 

Finally, p-values are computed for each taxon, using the method of [17] to combine the 
individual p-values for positive probes associated with the taxon. This step depends 
crucially on the independence assumption. The product of the n p-values is used as a test 
statistic; its tail probability assuming independence of the p-values can be shown to be:  
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The candidate taxa are then ranked by this combined p-value.  

As mentioned in our discussion of the GreeneChip design, the GreeneLAMP algorithm 
was moderately successful in the analysis of viral samples, providing correct 
identification at the species level. Since the algorithm has only been applied to 
GreeneChip data, it is difficult to assess its performance independently from that of the 
chip design. The failure of the GreeneChip platform to precisely identify bacteria can be 
partially explained by the cross-reactivity of ribosomal RNA probes. However, an 
algorithm design that accounted for the greater affinity of probes for highly similar target 
sequences might have been able to overcome the limitations of the array design. A more 
severe limitation of GreeneLAMP is its inability to deal with complex mixtures, such as 
those found in clinical and environmental samples. Since the output of the algorithm is a 
single ranked list of taxa, there is no means to identify a combination of taxa that if 
present would best explain the observed intensity data. 

E‐Predict 
 
Another empirically motivated method is the E-Predict algorithm [18], which was 
developed for analyzing ViroChip arrays. E-Predict computes a “theoretical hybridization 
energy profile” for each complete viral genome, by using BLAST to align probes to the 
genome sequence, and then computing a predicted hybridization free energy for each 
probe having a significant alignment. Free energies, which provide a measure of affinity 
for a probe to bind to a target genome fragment, are computed using a nearest- neighbor 
stacking energy method [19], and are then normalized to produce a vector within the unit 
hypercube:  
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Here n is the number of probes and ∆Gij is the raw free energy for probe i hybridizing to 
target j . Probes with no BLAST hit to the target genome are assigned zero free energies. 
To identify the target hybridized to an array, E-Predict normalizes the probe intensities yi 
to sum to 1:  
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The normalized intensity vector is then compared to the normalized energy vector for 
each target in a database, using the uncentered Pearson correlation coefficient as a 
similarity score. The target having the highest score is then predicted to be present in the 
array sample.  
P-values are associated with scores by comparing them to an empirical probability 
distribution derived from 1,009 microarray experiments, which was found to be 
approximately log-normal. The authors assume that the underlying null distribution is 
exactly log-normal, and estimate its parameters by iteratively trimming the highest score 
values for each virus until the remaining logged scores show the least deviation from 
normality, according to a Shapiro-Wilk test. The mean and variance are computed from 
the remaining untrimmed values.  

To be useful for analyzing clinical and environmental samples, a detection algorithm 
must be able to identify multiple organisms within a sample. This problem is addressed 
with an iterative version of E-Predict. After identifying the most likely target as described 
above, E-Predict sets the intensities of the probes matching that target to zero, 
renormalizes the intensity vector, recomputes the similarity scores, and repeats the 
identification process.  

At first glance, E-Predict appears to be motivated by a thermodynamic model, since it 
uses free energies to represent probe-target similarity or affinity. However, the authors 
don’t present a physical justification for their choices of normalization and scoring 
functions; these were instead chosen because they provided the best separation in 
between-family comparisons and the least separation within families, for a particular test 
dataset. Therefore, one might be concerned that the algorithm might not generalize well 
to a wider range of datasets. Nevertheless, E-Predict has been successfully applied to 
identify or characterize viruses in thousands of ViroChip experiments. 

VIPR 
VIPR (Viral Identification using a PRobabilistic algorithm) [20] is a technique developed 
for analysis of viral diagnostic microarrays. It is essentially a naïve Bayes classifier, 
based on the assumption that probe intensities follow a log-normal distribution with one 
of two sets of parameters for each probe, according to whether it is predicted to bind the 
target in the sample (is “on”) or not (“off”). The binding predictions are obtained by 
calculating free energies ΔG with a nearest-neighbor approach, and treating probes with 
ΔG below a fixed threshold as “on”. To give accurate results, the VIPR model must be 
trained using data from positive control arrays to estimate the parameters of the “on” and 
“off” intensity distributions for each probe. Priors for the latent variables in the model 
(the on/off states) are derived by considering the numbers of probes predicted to be on for 
a given target, along with the number of targets sharing the same on/off prediction, and 
marginalizing over uniform joint probabilities. Given the prior probabilities, the on/off 
distribution parameters for each probe, and the observed probe intensities, VIPR 
computes posterior likelihoods for each target in a list of candidate viruses. 



When compared to E-Predict and other published algorithms, VIPR had greater accuracy 
in identifying viruses hybridized to a custom hemorrhagic fever virus array. Like 
GreeneLAMP, VIPR is not designed to deal with complex samples, where a mixture of 
targets might be present. Also, the requirement that parameters be fitted to data from 
arrays hybridized to each candidate target limits its usefulness for broad-spectrum 
microbial detection arrays. However, its ability to “learn” from additional training data 
means that VIPR may be more accurate than other algorithms when applied to 
specialized diagnostic arrays, designed to test for a limited range of species. 
 

PhyloDetect 
 
PhyloDetect [21] is one of the few analysis methods that deals explicitly with the 
genomic similarity between taxonomically related organisms, and the consequent 
tendency of some probes to cross-hybridize to multiple organisms. Given a “match 
matrix”  M = [mij], in which mij = 1 if probe i matches target j and 0 if not, PhyloDetect 
groups targets into a nested hierarchy, based on the similarity of their column vectors in 
the match matrix. Targets that are indistinguishable (because their match vectors are 
identical) are collapsed. This grouping is done once for each array design and candidate 
target set. To analyze an array, PhyloDetect reduces the probe intensities to binary 
indicators (e.g., by thresholding against the median + 2SD of the background intensities), 
and performs a series of hypothesis tests, one for each group in the hierarchy. 
Interestingly, the null hypothesis in each test is that an organism in the group is present; 
the alternative is that no organism in the group is present. The test statistic is based on the 
number of probes matching the group that have zero indicators, and a probe-independent 
false negative rate γ. If there are n probes matching the group, the likelihood of observing 
r or more probes below the detection threshold is the complement of the cumulative 
binomial distribution, 
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This likelihood score is compared against a significance threshold α, and the group is 
predicted to be absent (at significance level α) if the likelihood is below α. The test is 
repeated for every group at every level in the hierarchy, and the scores are displayed in a 
tree structure format. 
PhyloDetect is designed to work with data for any detection array, provided that one can 
construct a match matrix for its probes against a list of candidate targets; in fact, it is 
available as a web application provided by the authors. However, this implementation 
doesn’t scale well for high-density microarrays or large candidate target sets, because the 
matrix must be instantiated in memory. In addition, the false negative rate parameter 
must be chosen carefully for each array design. The greatest strength of PhyloDetect is 
that its results can be easily interpreted, in the common situation where the sample 
contains an organism related but not identical to one or more of the candidate targets. 



Composite Likelihood Maximization (CLiMax) 
 
The CLiMax algorithm (composite likelihood maximization) is a fully model-based 
approach, used to analyze data from LLMDA arrays [14]. CLiMax models the likelihood 
of the observed pattern of probe intensities as a function of the set of targets present in 
the sample, and follows a greedy maximization procedure to identify a locally optimal set 
of targets that best explains the observed intensities. The likelihood is estimated as a 
product of probe-specific factors, treating the probe intensities as conditionally 
independent variables, given the sample composition (thus, it is a composite likelihood 
approximation). Although the conditional independence assumption does not hold for 
arbitrary sets of probes, it is valid for array designs such as the LLMDA, in which probes 
are carefully selected to avoid overlapping sequences. 

The factors in the CLiMax model are conditional probabilities that the probe intensity 
will exceed a certain threshold, given the presence of a particular target at some minimal 
concentration. The threshold value is determined from the distribution of negative control 
probe intensities on the array, and is used to distinguish target-specific signals from 
signals due to nonspecific hybridization. Essentially, CLiMax reduces the probe 
intensities to binary variables, which are described by a logistic regression model. The 
apparent loss of information implied here is mitigated by the fact that, in most 
experiments, probe intensities fall into two distinct clusters, one near the optical 
saturation limit and the other near the background fluorescence level. The covariates in 
the logistic regression model are derived from BLAST alignments of probe sequences to 
targets in a database of microbial genomes: the BLAST score, the alignment start position 
within the probe sequence, and a melting temperature computed for the aligned DNA 
duplex. Coefficients for the model predictors are fitted to data from hybridizations to 
targets with known genome sequences. The CLiMax logistic regression model also 
includes a term to account for the observation that probes with low sequence complexity 
are more likely than others to hybridize nonspecifically to dissimilar targets. It measures 
sequence complexity by the entropy of the frequency distribution of trimers in the probe 
sequence. 

If Xj is a binary variable indicating whether target j is present in a sample, and Yi is an 
indicator representing whether the intensity of probe i is above the detection threshold, 
the likelihood of Xj given the observed data Y = {Yi} is 
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provided that, at most, one target genome is present in the sample. Here Si is the probe 
sequence entropy, Tij is the melting temperature for a duplex of probe i and target j, Bij is 
the BLAST score, Qij is the position of the aligned target on the probe sequence, and a0 
through a4 are the fitted model coefficients. When multiple targets may be present, 
CLiMax uses the following approximation to estimate the probe detection probabilities: 
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To identify a set of targets that best explains the observed probe intensities, CLiMax 
starts with an empty target set, and then iterates through a list of candidates, at each 
iteration choosing the target which, when added to the present set, yields the largest 
increase in the likelihood score. Iterations continue until a preset maximum, or until no 
additional increase in the likelihood is possible. Log-odds scores for each predicted target 
are presented graphically, as two values: its actual log likelihood contribution given the 
previously selected targets, and the contribution it would have yielded if it were chosen 
first (assuming no other targets present). An example of CLiMax results for a typical 
LLMDA experiment is shown in Figure 2. 

 

 
 

Figure 2: Results of LLMDA analysis of a cervical smear sample, indicating presence of four types of 
human papillomavirus (16, 53, 6 and 61), confirmed by an independent assay. 

Conclusions and future perspectives 
 
Several promising approaches to microbial detection array design and analysis have been 
tested during the past decade. The array platforms vary widely in terms of fabrication 
cost, range of organisms targeted, sensitivity and specificity of detection. An essential 
element of each array platform is an analysis algorithm, tailored to the characteristics of 
the array design, that can make sense of the noisy data produced with current array 
technology and yield easily interpretable results. Analysis and visualization software will 
become especially important as microbial detection arrays move from the research 
environment to widespread medical, industrial and military use. These tools will 
undoubtedly evolve to combine the best features of current algorithms. 



Further advances in array technology will also facilitate their broader use for pathogen 
detection. These will include higher probe densities; automated techniques for sample 
preparation, DNA/RNA extraction and amplification; faster hybridization times; label-
free methods to detect probe-target binding; and efficient analysis algorithms that run on 
smart phone-size computers. Ultimately, these advances will lead to detection arrays that 
function as components of mobile, point-of-care devices, which can deliver results in less 
than an hour rather than overnight. 
Improved techniques for metagenomic sequence analysis will also lead to better array 
designs, by allowing probes to be designed for species that do not grow in isolation under 
laboratory culture. Besides being able to identify a wider range of organisms, these newer 
designs will have better specificity, as probes that cross-hybridize to previously unknown 
species can be excluded. 

Finally, application of detection microarrays in food safety and medical settings will 
require the development of tools to assess the quality of array hybridizations and the 
resulting data. In addition, microarray technology will need to evolve in order to achieve 
the level of reproducibility needed for diagnostic use. For this to occur, we will have to 
improve our understanding of the complex biophysics underlying array hybridization, 
which is an active area of research.  
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Key Points: 
 

1. Microarrays are emerging as a cost-effective, broad-spectrum platform for 
detection of pathogens in clinical and environmental samples, foods, 
pharmaceuticals and other products. 

2. A variety of array designs have been developed by researchers, some focused 
only on viruses and others targeting the full range of known bacterial, viral and 
fungal pathogens. 

3. Statistical analysis methods coupled to the features of each array design are a key 
element of each array platform. 

4. Application of microbial detection arrays in the clinic will require quality control 
procedures for array manufacture and processing, as well as analysis and data 
visualization methods that provide easily interpretable results. 



Figure captions: 
 

Figure 1: Schematic view of a microarray, showing single-stranded DNA oligo probes 
attached to substrate, with fluorescently labeled (green) target DNA strands bound to 
selected oligos. 
 

Figure 2: Results of LLMDA analysis of a cervical smear sample, indicating presence of 
four types of human papillomavirus (16, 53, 6 and 61), confirmed by an independent 
assay. 


